Multi-Robot Flocking Control Based on Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Hybrid System of Reinforcement Learning and Flocking Control in Multi-robot Domain
In multi-robot domain, one of the important problems is to achieve cooperation among robots. In this paper we propose a hybrid system that integrates reinforcement learning and flocking control in order to create adaptive and intelligent multi-robot systems. We study two problems of multi-robot concurrent learning of cooperative behaviors: (1) how to generate efficient combination of high level...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملFlocking-Based Multi-Robot Exploration
Exploration of an unknown environment is one of the major applications of Multi-Robot Systems. Many works have proposed multi-robot coordination algorithms to accomplish exploration missions based on multi-agent systems techniques. Some of these works particularly focus on multi-robot exploration under communication constraint. In this paper, we propose a solution based on flocking rules in ord...
متن کاملMulti-Objective Deep Reinforcement Learning
We propose Deep Optimistic Linear Support Learning (DOL) to solve highdimensional multi-objective decision problems where the relative importances of the objectives are not known a priori. Using features from the high-dimensional inputs, DOL computes the convex coverage set containing all potential optimal solutions of the convex combinations of the objectives. To our knowledge, this is the fir...
متن کاملMulti-Agent Deep Reinforcement Learning
This work introduces a novel approach for solving reinforcement learning problems in multi-agent settings. We propose a state reformulation of multi-agent problems in R that allows the system state to be represented in an image-like fashion. We then apply deep reinforcement learning techniques with a convolution neural network as the Q-value function approximator to learn distributed multi-agen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3016951